Polynomial Approximation or Surface fitting with python

I have a cvs file that contianes coordinates of 3D surface x,y are the axes and Z is the height. How can I do the Surface fitting with python.
I have found an Code in C++ and it did this. Is there any one, who can help me to convert this code to Python?

The code in C++

``````int main( int argc, char** argv )
{

Mat M = Mat_<double>(z.rows*z.cols,6);
Mat I=Mat_<double>(z.rows*z.cols,1);
for (int i=0;i<z.rows;i++)
for (int j = 0; j < z.cols; j++)
{
double x=(j - z.cols / 2)/double(z.cols),y= (i - z.rows / 2)/double(z.rows);
M.at<double>(i*z.cols+j, 0) = x*x;
M.at<double>(i*z.cols+j, 1) = y*y;
M.at<double>(i*z.cols+j, 2) = x*y;
M.at<double>(i*z.cols+j, 3) = x;
M.at<double>(i*z.cols+j, 4) = y;
M.at<double>(i*z.cols+j, 5) = 1;
I.at<double>(i*z.cols+j, 0) = z.at<uchar>(i,j);
}
SVD s(M);
Mat q;
s.backSubst(I,q);
cout<<q;
imshow("Orignal",z);
cout<<q.at<double>(2,0);
Mat background(z.rows,z.cols,CV_8UC1);
for (int i=0;i<z.rows;i++)
for (int j = 0; j < z.cols; j++)
{
double x=(j - z.cols / 2) / double(z.cols),y= (i - z.rows / 2) /
double(z.rows);